ERS CO₂

Description

ERS CO_2 is a sensor for measuring the indoor environment. It is enclosed in a room sensor box and is designed to be wall mounted. ERS CO_2 is completely wireless and powered by two 3.6V AA lithium batteries. Inside you will find internal sensors for measuring indoor CO_2 levels, temperature, humidity, light, and motion.

Applications

- Indoor environment measuring
- Smart buildings
- Workplace management
- Room occupancy

Product features

- LoRaWAN Certified CM
- CO₂ sensor
- Temperature sensor
- Humidity sensor
- Light sensor
- Motion detection sensor (PIR)
- NFC for configuration
- Configuration over the air

Device Specifications

•			
Mechanical specifications			
Weight	80 g excluding batteries / 120 g including batteries		
Dimensions	86 x 86 x 27 mm		
Enclosure	Plastic, PC/ABS		
Operating conditions			
Temperature	0 to 40 °C		
Humidity	0 to 85% RH (non-condensing)		
Device Power Supply			
Battery Type	2 x 3.6V AA Lithium Batteries		
Expected Battery Life	<10 years (Depending on configurations and environment)		
Device Logging Function			
Sampling Interval	Configurable via NFC and downlink configuration		
Data Upload Interval	Configurable via NFC and downlink configuration		

ERS CO₂

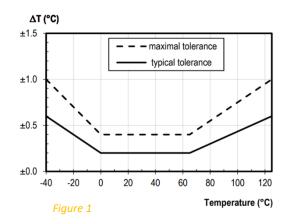
Radio / Wireless			
Wireless Technology	LoRaWAN® 1.0.3		
Wireless Security	LoRaWAN® End-to-End encryption (AES-CTR), Data Integrity Protection (AES-CMAC)		
LoRaWAN Device Type	Class A/C (configurable) End-device		
Supported LoRaWAN® features	OTAA, ABP, ADR, Adaptive Channel Setup		
Supportet LoRaWAN® regions	US902 - 928, EU863 - 870, AS923, AU915 - 928, KR920 - 923, RU864, IN865		
Link Budget	137 dB (SF7) to 151 dB (SF12)		
RF Transmit Power	14 dB / 20 dB (Region specific)		

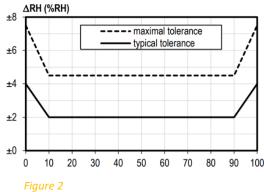
Data types			
Type value	Туре	Data size	Comment
OxO1	Temperature	2	-3276.5 °C → 3276.5 °C (Value of: 100 → 10.0 °C)
0x02	Humidity	1	0 – 100 %
0x04	Light	2	0 – 65535 Lux
0x05	Motion (PIR)	1	0 – 255 (Number of motion counts)
0x06	CO ₂	2	0 - 2000 ppm (Extended: 0 - 10000 ppm)
0x07	VDD (Battery voltage)	2	0 – 65535 mV
0x3D	Debug information	4	Data depends on debug information
0x3E	Sensor settings	n	Sensor setting sent to server at startup (first package). Sent on Port+1.

Sensors

Temperature

Resolution: 0.1 °C


Accuracy: ±0.2 °C (See figure 1)



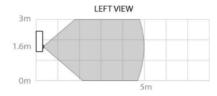
Resolution: 0.1 % RH

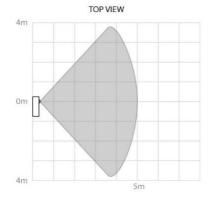
Accuracy at 25 °C: ± 2 % RH (See figure 2)

Accuracy of humidity over temperature: See figure 3

ERS CO₂

Light


Range: 4 - 2000 LUX


Resolution: 1 LUX

Accuracy: ± 10 LUX

RH (%RH) 100 90 80 70 60 50 ±2 40 30 20 10 10 20 30 40 50 60 70 80 Temperature (°C) Figure 3

Motion (PIR)

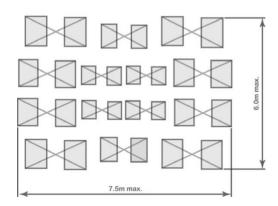


Figure 4 - Detection pattern

Note:

There is a blanking time of 30 seconds of the PIR triggering after each PIR trig and after each transmission. This is to reduce the risk of self-triggering from internal events that could disturb the high sensitivity PIR circuits.

CO_2

Range, calibrated: 0 – 2000 ppm Range, extended: 0 – 10000 ppm

Accuracy, calibrated: \pm 50 ppm / \pm 3% of reading

Accuracy, extended: ± 10% of reading

Accuracy is met at $10 - 40^{\circ}$ C, 0 - 60%RH, after minimum three (3) performed Automatic Baseline. Corrections, preferably spanning eight (8) days in-between, or a successful zero-calibration

Noise: 14 ppm at 400 ppm / 25 ppm at 1000 ppm

Note:

The CO2 sensor has an internal automatic calibration routine. This routine calibrates the sensor to set 400 ppm to the lowest value that has been read in the last period of approximately 8 days. This means that in an 8 day period, the sensor must be exposed to fresh (well ventilated) air at least once for the calibration to work. The sensor can also be manually calibrated.